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Abstract A new sampling method is proposed for pro-

jector Monte Carlo (PMC) calculations based on Slater

determinants (SD) in singlet states. Using the symmetry of

the a and b electron determinants, the number of config-

urations to be considered can be about one-half of the

original sampling. We applied the new sampling to the

PMC-SD calculations of the H2O molecule in the ground

state. The results were always improved by the new sam-

pling method both for the equilibrium and for bond-stret-

ched structures.
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1 Introduction

The diffusion Monte Carlo (DMC) method [1–5], also

called the projector Monte Carlo (PMC) method, has

attracted considerable interest recently because it is suit-

able for massively parallel calculations. The DMC method

also has been known as a very accurate method that can

simulate the exact solution of a Schrödinger equation. The

numerically exact value is obtainable without limitations

from basis set expansion because electrons are expressed as

particles. Antisymmetry of electrons is considered using

the nodes of trial wave functions [6–8]. Consequently, the

accuracy of the DMC method depends strongly on the

accuracy of trial wave functions. Although this node-

dependency can be reduced by optimization of trial wave

functions using variational Monte Carlo techniques [9], it

remains an important disadvantage of the DMC method.

To avoid the node-dependency on trial wave functions,

we have proposed a PMC method based on configuration

state functions (CSFs) [10] or Slater determinants (SDs)

[11]. Using CSFs or SDs as walkers, the antisymmetry of

electrons is satisfied automatically. Therefore, no addi-

tional information such as nodes of trial wave functions is

required. The accuracy of the PMC method is improved

systematically by increasing the number of walkers. It

converges to the full configuration interaction (CI) as a

limit. We have recently expanded the PMC-SD method to

excited calculations [11]. Excited states are calculated

state-by-state by eliminating the properties of the lower

states from the imaginary-time propagator.

Recently, a very similar method, the full configuration

interaction quantum Monte Carlo method [12], was

reported by Alavi and coworkers for ground state calcu-

lations. In their method, the case where the transition of a

walker is accepted and the case where the transition is

rejected are considered separately. However, the definition

of the transition probability and the sign of a newly gen-

erated walker are the same as ours. Their results show

excellent agreement with the full-CI ones. They have also

proposed an approximation to cut off of the walkers [13]

and have shown the efficiency of such methods.

In this article, we propose a new sampling method for

the PMC-SD calculations of singlet states to reduce com-

putational costs. The number of configurations to be con-

sidered is considerably decreased using the symmetries of

configurations, and the sampling efficiency is improved.
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Problems related to spin symmetry caused by statistical

errors are also reduced.

2 Theory and algorithm

In the PMC-SD and PMC-CSF methods, the formal solu-

tion of the imaginary-time Schrödinger equation,

W sþ Dsð Þ ¼ exp �DsĤ
� �

W sð Þ; ð1Þ

is simulated using the Monte Carlo method. For simplicity

of integration, the imaginary-time propagator, exp

�DsĤ
� �

, is truncated up to the linear terms as

W sþ Dsð Þ ¼ exp �DsĤ
� �

W sð Þ � 1� DsĤ
� �

W sð Þ
¼
X

I;J

Ij i Ih j 1� DsĤ
� �

Jj i Jh jW sð Þ

¼
X

I;J

Ij iUyU Ih j 1� DsĤ
� �

Jj iUyU Jh jW sð Þ

¼
X

I0
I0j i 1� DsEI0ð Þ I0h jW sð Þ;

ð2Þ

where Ij i is a SD in the PMC-SD method, and where

EI0and I0j i, respectively, represent the I- eigenvalue and

eigenvector of Hamiltonian. Ij i and I0j i are related by a

unitary transformation (i.e., U Ij i ¼ I0j i). However, the

converged eigenvector (wave function) is correct because

the following relation is satisfied in Eq. 2 when time step

Ds is sufficiently small.

1� DsE00 [ 1� DsE10 [ 1� DsE20 [ � � � [ 1� DsEN0

ð3Þ

Therein, E00 is the ground state energy.

In the PMC-SD method, the walkers of the Monte Carlo

simulation are the electronic configurations expressed by

SDs. The distribution of walkers is defined as

q ¼ n0; n1; n2; . . .; nNð Þ; ð4Þ

where nI is the number of walkers whose configuration is

Ij i. This distribution varies by the Monte Carlo simulation

of the operation of the approximated imaginary-time

propagator in Eq. 2. As presented in Fig. 1, the transition

probability is defined as the matrix element of the

imaginary-time propagator. We usually use configurations

that are mutually orthonormal (hIjJi ¼ dIJ). Therefore, the

transition probabilities are proportional to the Hamiltonian

matrix elements, as

Ih j 1� DsĤ
� �

Jj i ¼ �Ds Ih jĤ Jj i: ð5Þ

If a random number is smaller than the transition proba-

bility, then the transition is accepted. The detailed algo-

rithm is presented in Fig. 1 of Ref. [10]. In one step, all

walkers undergo this process.

The calculation proceeds as portrayed in Fig. 2. First,

we prepare an initial distribution of walkers, which usually

consists of only the HF configuration j0i. In the next step,

the configurations of some walkers change to others. After

an adequate step, we can obtain a stationary distribution,

which corresponds to the ground state wave function. The

wave function is obtained using the normalization of

summation of the distribution, as

WPMC�SD ¼
X

I

CI Ij i ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

I
nIð Þ2

r �
X

I

nI Ij i: ð6Þ

Therefore, the coefficient of configuration Ij i is propor-

tional to the numbers of walkers whose configuration is Ij i
(CI � nI).

( ) ( )
,

ˆˆ 11
I J

H K I I H J J Kττ− Δ × = − Δ ×∑

( ) ˆˆˆˆ1 K H K K I H K I J H K J N H K Nττττ= − Δ × − Δ × − Δ × − − Δ ×

NJIKK ...

...

Imaginary-time 

propagator Configuration 

Monte Carlo simulation 

ˆ1 K H Kτ− Δ ˆI H KτΔ
ˆJ H KτΔ

ˆN H KτΔ

Accepted 

Rejected 
Probability = 

Fig. 1 Monte Carlo

representation of operation of

the imaginary-time propagator
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The energy is calculated variationally in Ref. [10] as

EPMC�SD variationalð Þ ¼ WPMC�SDh jĤ WPMC�SDj i: ð7Þ

We can also estimate the energy non-variationally using

intermediate normalization as

EPMC�SD non - variationalð Þ ¼ 0h jĤ W0PMC�SD

�� �
; ð8Þ

where j0i is usually the HF configuration. W0PMC�SD

�� �
is the

intermediate normalized wave function:

W0PMC�SD

�� �
¼ WPMC�SDj i=C0

¼ 1:0 0j i þ C1

C0

1j i þ C2

C0

2j i þ � � � þ CN

C0

Nj i:

ð9Þ

This energy is the same as the projected energy reported in

Ref. [12]. The statistical errors of the non-variational

energies are larger than those of the variational energies.

However, the computational costs for the energy calcula-

tions are much smaller. In this article, all energies were

calculated non-variationally.

In the PMC-SD method, the transition probabilities and

energies are calculated more quickly than those of the

PMC-CSF method because the Hamiltonian matrix ele-

ments between SDs are simpler than those between CSFs.

However, the number of independent variables of SDs is

larger than that of CSFs, and the spin symmetry is not

usually conserved. Therefore, we introduce a new sampling

to the PMC-SD method to reduce these problems using the

symmetry of the a and b electron determinants in singlet

states.

A Slater determinant or electronic configuration can be

expressed as a combination of a and b electron determi-

nants (a electron determinant) 9 (b electron determinant).

In the present program, the electronic configurations are

stored as a two-dimensional array, jI; Ji, where I and J,

respectively, denote the labels of a and b electron deter-

minants: For example, the configuration j1; 1i represents

the Hartree–Fock configuration. In an exact wave function

of singlet states, the coefficient of configuration jI; Ji is the

same as that of configuration jJ; Ii. Therefore, we perform

the Monte Carlo simulations using only configurations

jJ; Ii whose labels satisfy J C I. The total number of

configurations to be considered decreases from N2 to

N 9 (N ? 1)/2 if the space symmetry is not considered,

where N is the number of the a electron determinants.

When N is large, the total number of configurations

becomes nearly one-half.

In the new sampling, all possible transitions from a

configuration are considered as in the original (random)

sampling. However, if the transition to configuration jI; Ji
(I \ J) is allowed, it is stored as jJ; Ii, which is justified by

presuming that the walkers whose configuration is jI; Ji
(I \ J) are hidden in the simulations and the number of

hidden walkers whose configuration is jI; Ji is set to be the

same as that of jJ; Ii. As depicted in Fig. 3, the transition

from the hidden configuration jI; Ji [solid arrow (I)] takes

place at the same time when the transition from the con-

figuration jJ; Ii [solid arrow (II)] occurs, which is verified

because the transition probability from the configuration

jJ; Ii to the hidden configuration jK; Li, �Ds J; Ih jĤ K; Lj i,
is equal to the transition probability from the hidden con-

figuration jI; Ji to configuration jL;Ki;�Ds I; Jh jĤ L;Kj i.

Fig. 2 Job stream of the PMC-SD calculation

Fig. 3 Schematic representation of the transitions between configu-

rations in the new sampling
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Similarly, we presume that the transition between hidden

configurations [dashed arrow (IV)] takes place when the

transition from jJ; Ii tojL;Ki [dashed arrow (III)] occurs to

keep (the number of jJ; IiÞ ¼ ðthe number ofjI; JiÞ. For

closed shell configurations, jI; Ii, one-half of the walkers

are treated as hidden as depicted in Fig. 3.

When the wave function is constructed, the hidden

configurations jI; Ji are considered explicitly. The number

of walkers whose configuration is jI; Ji, nI,J, is set to be that

of the configuration jJ; Ii; nJ;I . The numbers of walkers

whose configurations are closed shell, jI; Ii, are doubled

because one-half of walkers are hidden in the simulation.

As a result, the wave function is defined as follows.

WPMC�SD

¼ 2�
P

I nI;I I; Ij i þ
P

J [ I nJ;I J; Ij i þ
P

J [ I nJ;I I; Jj i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

I 2� nI;I

� �2 þ 2�
P

J [ I nJ;I

� �2
q :

ð10Þ

It is noteworthy that the spin symmetry is conserved up

to single excited configurations. In addition, triplet states

are excluded from calculations because the coefficient of

jI; Ji is fixed to be the same as that of jJ; Ii.

3 Results and discussion

The program of the developed PMC-SD method was

implemented based on the GAMESS program package

[14, 15]. In the present algorithm, molecular integrals are

stored in memory. Then, the transition probabilities and

weights are calculated from the molecular integrals each

time as needed. The random numbers are generated using

the Mersenne Twister method [16, 17].

We compared the PMC-SD results with the full-CI ones

of H2O in the ground state calculated by Olsen et al. [18].

The cc-pVDZ basis [19] was used; the numbers of

molecular orbitals and the full-CI dimension (the number

of independent configurations) were, respectively, 24 and

about 4.5 9 108. The time step (Ds) was fixed to 0.0002.

For the Monte Carlo step number, 10,000 steps were used

for the convergence to the stationary distribution, and the

PMC-SD energy was defined as the average energy over

the subsequent 10,000 steps.

The PMC-SD energies and standard deviations are

presented in Table 1. Three different numbers of walkers

(2 9 107, 4 9 107, and 8 9 107) were used to examine the

convergence against the number of walkers. They are,

respectively, about 1/20, 1/10, and 1/5 of the full-CI

dimension. For the original sampling, we did not obtain a

stationary distribution for 2 9 107 walkers. For 4 9 107

and 8 9 107 walkers, the respective PMC-SD energies

were -76.242 (2) and -76.2416 (5) Hartree. In both cases,

the full-CI value (-76.241860 Hartree) [18] was repro-

duced within the statistical errors.

By the new sampling, a stationary distribution was

obtained even for 2 9 107 walkers. The PMC-SD ener-

gies were, respectively, -76.240(2), -76.2424(8), and

-76.2417(3) Hartree for 2 9 107, 4 9 107, and 8 9 107

walkers. Although the average energies did not depend on

the sampling methods to any great degree, the statistical

errors became smaller by the new sampling. The standard

deviations by the original sampling were, respectively, 2

and 0.5 mHartree for 4 9 107 and 8 9 107 walkers,

whereas they were, respectively, 0.8 and 0.3 mHartree by

the new sampling. By the new sampling, the number of the

independent configurations becomes small. For that reason,

the number of the walkers whose configurations are the

same becomes larger. Therefore, the standard deviations

are reduced by the new sampling. For example, the number

of walkers whose configurations were the HF was about

108,000 for 4 9 107 walkers by the original sampling, but

570,000 by the new sampling.

We also calculated the expectation values of the S2

operator, hWPMC�SDjS2jWPMC�SDi, for the original and new

samplings. The results for 4 9 107 walkers were 2.8 9 10-2

and 7.7 9 10-4 for the original and new samplings,

respectively. The new sampling makes the expectation value

much closer to zero for the pure spin state.

We applied this new sampling also to the bond-stretched

structures of H2O in the ground state to observe the effects

on the multi-reference type wave functions. As discussed in

Ref. [10], more walkers are usually required for bond-

stretched structures to obtain accuracy similar to the

Table 1 Total energies (in Hartree) of the ground states of H2O calculated using full-CI and PMC-SD methods using three different quantities of

walkers

Number of walkers in PMC-SD Full-CIa

2 9 107 4 9 107 8 9 107

Original sampling – -76.242 (2) -76.2416 (5) -76.241860

New sampling -76.240 (2) -76.2424 (8) -76.2417 (3) –

a Ref. [18]
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equilibrium structure in the PMC-SD method because it is

more difficult to sample wave functions that are dominated

by several configurations than to sample those dominated

by one configuration. The results obtained using 4 9 107

walkers for the geometry whose O–H bond lengths are

twice and three times as large as those of the equilibrium

structure (2 9 Re and 3 9 Re) are presented in Table 2. To

prepare good initial distributions, we performed the com-

plete active space (CAS) CI calculations with six active

orbitals and six active electrons. For 2 9 Re, the PMC-SD

energies were -75.953(1) and -75.951(1) Hartree,

respectively, by the original and new sampling methods.

Although the standard deviations happened to be the same,

the energy using the new sampling is closer to the full-CI

value of -75.951665 Hartree. [18].

For the calculations at 3 9 Re, we took 20,000 steps for

convergence and subsequent 30,000 steps for energy cal-

culations. The energy convergence often becomes slow at

bond-stretched structures because it remains difficult to

obtain a good initial distribution by small CI calculations.

In addition, small energy differences between the ground

and excited states at the bond-stretched structure slow the

convergence, as shown by Eq. 2. Even after convergence,

the PMC-SD energy oscillated very slowly around the

exact value, and therefore, we used a time step of 0.0005

that is larger than the case at 1 9 Re and 2 9 Re. The

PMC-SD energies were -75.913(2) and -75.912(2) Har-

tree, respectively, using the original and new sampling

methods. The discrepancy by the original sampling from

the full-CI value of -75.911946 Hartree [18] was about 1

mHartree. Although the standard deviations are similar, the

new sampling method yielded a better result than that of

original sampling.

4 Conclusion

We developed a new sampling method for the PMC-SD

calculations of singlet states to reduce the computational

costs. The number of configurations to be considered

decreases according to the symmetry of a and b electron

determinants in a singlet state. The efficiency of sampling

is thereby improved. We applied the new sampling to the

PMC-SD calculations of H2O in the ground state. The new

sampling method always yielded better results both for the

equilibrium and bond-stretched structures. For the spin

symmetry, the lower triplet states can be excluded from

calculations. Furthermore, the spin contamination can be

reduced because the spin symmetry is conserved up to

single excited configurations.
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